Energy Storage Devices Slideshow and powerpoint viewer: Objective of Lecture Describe The construction of an inductor How energy is stored in an inductor The electrical properties of an

Objective of Lecture Describe The construction of an inductor How energy is stored in an inductor The electrical properties of an inductor Relationship between voltage, current, and inductance; power; and energy Equivalent inductance when a set of inductors are in series and in parallel

Inductors Generally - coil of conducting wire Usually wrapped around a solid core. If no core is used, then the inductor is said to have an ‘air core’. http://bzupages.com/f231/energy-stored-inductor-uzma-noreen-group6-

Alternative Names for Inductors Reactor- inductor in a power grid Choke - designed to block a particular frequency while allowing currents at lower frequencies or d.c. currents through Commonly used in RF (radio frequency) circuitry Coil - often coated with varnish and/or wrapped with insulating tape to provide additional insulation and secure them in place A winding is a coil with taps (terminals). Solenoid – a three dimensional coil. Also used to denote an electromagnet where the magnetic field is generated by current flowing through a toroidal inductor.

Energy Storage The flow of current through an inductor creates a magnetic field (right hand rule). B field http://en.wikibooks.org/wiki/Circuit_Theory/Mutual_Ind Ifuctance the current flowing through the inductor drops, the magnetic field will also decrease and energy is released through the generation of a current.

Sign Convention • The sign convention used with an inductor is the same as for a power dissipating device. • When current flows into the positive side of the voltage across the inductor, it is positive and the inductor is dissipating power. • When the inductor releases energy back into the circuit, the sign of the current will be negative.

Inductors Stores energy in an magnetic field created by the electric current flowing through it. Inductor opposes change in current flowing through it. Current through an inductor is continuous; voltage can be discontinuous. http://www.rfcafe.com/references/electrical/Electricity%20-%20Basic%20Navy%20Training %20Courses/electricity%20-%20basic%20navy%20training%20courses%20-%20chapter

Calculations of L For a solenoid (toroidal inductor) 2 2 N A N r o A L N is the number of turns of wire A is the cross-sectional area of the toroid in m2. r is the relative permeability of the core material o is the vacuum permeability (4π × 10-7 H/m) l is the length of the wire used to wrap the toroid in meters

Properties of an Inductor Acts like an short circuit at steady state when connected to a d.c. voltage or current source. Current through an inductor must be continuous There are no abrupt changes to the current, but there can be abrupt changes in the voltage across an inductor. An ideal inductor does not dissipate energy, it takes power from the circuit when storing energy and returns it when discharging.

Properties of a Real Inductor Real inductors do dissipate energy due resistive losses in the length of wire and capacitive coupling between turns of the wire.

Leq for Inductors in Series vin v1 v2 v3 v4 di di v1 L1 v2 L2 dt dt i di di v3 L3 v4 L4 dt dt di di di di vin L1 L2 L3 L4 dt dt dt dt di vin Leq dt L eq L1 L2 L3 L4

General Equations for Leq Series Combination Parallel Combination If S inductors are in If P inductors are in series, then parallel, then: S Leq Ls s 1 P 1 Leq p 1 L p 1

Summary Inductors are energy storage devices. An ideal inductor act like a short circuit at steady state when a DC voltage or current has been applied. The current through an inductor must be a continuous function; the voltage across an inductor can be discontinuous. The equation for equivalent inductance for inductors S in series parallel Leq Ls s 1 1 inductors P in Leq p 1 1 L p