501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 114 114 114 114 114 114 114 114 115 115 115 115 115 115 115 115 115 116 116 116 116 116 116 116 116 116 116 117 117 117 117 117 117 117 117 117 117 117 117 117 118 118 118 118 118 118 118 118 118 118 119 119 119 119 119 119 119 119 119 119 119 119 119 119 119 120 120 120 120 120 120 120 120 121 121 121 121 121 121 121 121 121 121 121 122 122 122 122 122 122 122 122 123 123 123 123 123 123 123 123 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 123 123 123 123 123 123 123 123 123 123 124 124 124 124 124 124 124 124 124 124 124 124 124 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 125 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 126 127 127 127 127 127 127 127 127 127 127 127 127 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 128 129 129 129 129 129 129 129 129 129 129 129 129 129 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 129 129 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 131 132 132 132 132 132 132 132 132 132 132 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 133 134 134 134 134 134 134 134 134 134 134 134 134 134 134 134 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 135 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 135 135 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 136 137 137 137 137 137 137 137 137 137 137 137 137 137 137 138 138 138 138 138 138 138 138 138 138 138 138 138 138 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 139 140 140 140 140 140 140 140 140 140 140 140 140 140 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 141 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
View full slide show




Application 6.1 UCLR D4 R 1.864(0.38) 0.708 LCLR  D3 R 0.136(0.38) 0.052 © 2007 Pearson Education
View full slide show




Control Charts for Variables Control Charts - Special Metal Screw R - Charts UCLR = D4R LCLR = D3R R = 0.0020 D4 = 2.282 D3 = 0 UCLR = 2.282 (0.0020) = 0.00456 in. LCLR = 0 (0.0020) = 0 in.
View full slide show




Getting Started in Fast Track If you’re interested in registering for Fast Track classes, contact one of the following advisors:       Jennifer Beattie 864-646-1333 Andrea Barnett 864-646-1499 Keri Catalfomo 864-646-1621 (Math) Robin Pepper 864-646-1371 (Math) Robin McFall 864-646-1360 (English) Joan Kalley 864-646-1366 (English)
View full slide show




Learning with Constrained Latent Representation (LCLR): Framework  LCLR provides a general inference formulation that allows that use of expressive constraints  Flexibly adapted for many tasks that require latent representations. LCLR Model  Declarative model Paraphrasing: Model input as graphs, V(G1,2), E(G1,2)  Four Hidden variables:   hv1,v2 – possible vertex mappings; h e1,e2 – possible edge mappings Constraints:    Each vertex in G1 can be mapped to a single vertex in G2 or to null Each edge in G1 can be mapped to a single edge in G2 or to null Edge mapping is active iff the corresponding node mappings are active 4: 0: 139
View full slide show




Or • 402,387,260,077,093,773,543,702,433,923,003,985,719,374,864,210,714,632,543,799,910,429,938,512,398,629,020,592,044,208,486,969,404,800,479,988,61 0,197,196,058,631,666,872,994,808,558,901,323,829,669,944,590,997,424,504,087,073,759,918,823,627,727,188,732,519,779,505,950,995,276,120,874,975, 462,497,043,601,418,278,094,646,496,291,056,393,887,437,886,487,337,119,181,045,825,783,647,849,977,012,476,632,889,835,955,735,432,513,185,323,95 8,463,075,557,409,114,262,417,474,349,347,553,428,646,576,611,667,797,396,668,820,291,207,379,143,853,719,588,249,808,126,867,838,374,559,731,746, 136,085,379,534,524,221,586,593,201,928,090,878,297,308,431,392,844,403,281,231,558,611,036,976,801,357,304,216,168,747,609,675,871,348,312,025,47 8,589,320,767,169,132,448,426,236,131,412,508,780,208,000,261,683,151,027,341,827,977,704,784,635,868,170,164,365,024,153,691,398,281,264,810,213, 092,761,244,896,359,928,705,114,964,975,419,909,342,221,566,832,572,080,821,333,186,116,811,553,615,836,546,984,046,708,975,602,900,950,537,616,47 5,847,728,421,889,679,646,244,945,160,765,353,408,198,901,385,442,487,984,959,953,319,101,723,355,556,602,139,450,399,736,280,750,137,837,615,307, 127,761,926,849,034,352,625,200,015,888,535,147,331,611,702,103,968,175,921,510,907,788,019,393,178,114,194,545,257,223,865,541,461,062,892,187,96 0,223,838,971,476,088,506,276,862,967,146,674,697,562,911,234,082,439,208,160,153,780,889,893,964,518,263,243,671,616,762,179,168,909,779,911,903, 754,031,274,622,289,988,005,195,444,414,282,012,187,361,745,992,642,956,581,746,628,302,955,570,299,024,324,153,181,617,210,465,832,036,786,906,11 7,260,158,783,520,751,516,284,225,540,265,170,483,304,226,143,974,286,933,061,690,897,968,482,590,125,458,327,168,226,458,066,526,769,958,652,682, 272,807,075,781,391,858,178,889,652,208,164,348,344,825,993,266,043,367,660,176,999,612,831,860,788,386,150,279,465,955,131,156,552,036,093,988,18 0,612,138,558,600,301,435,694,527,224,206,344,631,797,460,594,682,573,103,790,084,024,432,438,465,657,245,014,402,821,885,252,470,935,190,620,929, 023,136,493,273,497,565,513,958,720,559,654,228,749,774,011,413,346,962,715,422,845,862,377,387,538,230,483,865,688,976,461,927,383,814,900,140,76 7,310,446,640,259,899,490,222,221,765,904,339,901,886,018,566,526,485,061,799,702,356,193,897,017,860,040,811,889,729,918,311,021,171,229,845,901, 641,921,068,884,387,121,855,646,124,960,798,722,908,519,296,819,372,388,642,614,839,657,382,291,123,125,024,186,649,353,143,970,137,428,531,926,64 9,875,337,218,940,694,281,434,118,520,158,014,123,344,828,015,051,399,694,290,153,483,077,644,569,099,073,152,433,278,288,269,864,602,789,864,321, 139,083,506,217,095,002,597,389,863,554,277,196,742,822,248,757,586,765,752,344,220,207,573,630,569,498,825,087,968,928,162,753,848,863,396,909,95 9,826,280,956,121,450,994,871,701,244,516,461,260,379,029,309,120,889,086,942,028,510,640,182,154,399,457,156,805,941,872,748,998,094,254,742,173, 582,401,063,677,404,595,741,785,160,829,230,135,358,081,840,096,996,372,524,230,560,855,903,700,624,271,243,416,909,004,153,690,105,933,983,835,77 7,939,410,970,027,753,472,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000, 000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,00 0,000,000,000,000,000,000,000,000,000,000,000,000,000,000 •Whack off 7 of the zeros and divide by three to get the number of years to use Mallows method in a small ML problem 03/19/2019 San Francisco Federal Reserve 2017 18
View full slide show




RFA Contacts • Payroll Office 864-4385 [email protected] – Melissa Bissey 864-4016 [email protected] – Mobin Faghan 864-4387 [email protected] • KU Office of Research – Kara Wozniak 864-7428 – Rensi Yu 864-6387 [email protected] [email protected]
View full slide show




I titrate an unknown solution using a class A Ubur = 0.05 mL 50 mL burette. My results show standard deviation of 0.05 mL. How many mesurements I need 2 2 in order to get confidence interval of ±0.01 mL? total bur random u  u u 12.7 0.05  0.44 2 utotal  0.442  0.052 0.44 3.18 0.05 0.08 4 utotal  0.082  0.052 0.095 2.3 0.05 0.038 9 utotal  0.0382  0.052 0.06 2.1 0.05 0.02 20 utotal  0.022  0.052 0.054 1.98 0.05  0.009 N=120 120 utotal  0.0092  0.052 0.05 N=2 N=4  N=9  N=20 
View full slide show




Control Limits The control limits for the x-chart are: UCL–x = =x + A2R and LCLx–= x=- A2R Where = X = central line of the chart, which can be either the average of past sample means or a target value set for the process. A2 = constant to provide three-sigma limits for the sample mean. The control limits for the R-chart are UCLR = D4R and LCLR = D3R where R = average of several past R values and the central line of the chart. D3,D4 = constants that provide 3 standard deviations (three-sigma) limits for a given sample size. © 2007 Pearson Education
View full slide show




West Allis Industries R-chart Control Chart Factors Example 6.1 Factor Size of for Sample Charts (n) Factor for UCL Factor for and LCL for LCL for x-Charts R-Charts (A2) (D3) 2 1.880 0 3.267 3 1.023 0 R = 0.0021 2.575 4 0.729 0 D4 = 2.282 2.282 5 0.577 0 UCLR = D4R = 2.282 (0.0021) = 0.00479 in. D3 = 0 2.115 LCLR = D3R 0.483 0 (0.0021) = 0 in. 0 © 2007 Pearson Education 6 2.004 UCL R(D4)
View full slide show




Math Program Requirement  The program requirement for DA is MTH 052 Math for Introductory Physical Science or higher  Students must demonstrate and complete MTH 052 or higher prior to Fall Entry.  MTH 052 prerequisite by placement testing into MTH 052 or completion of MTH 020 Math Renewal within one academic year. • Courses completed at other schools must be considered equivalent or be approved for use in the application.
View full slide show




Simulation Results of Single Point Optimization Partial solution set generated by the evolutionary strategy Gain in Drive Gain in algorithm Solution Solution Drive Train Tower Gain in Train Tower Power No. (TV, BPA) Acceleration 1 2 3 4 5 6 7 (90.0, 8.81) (90.0, 7.34) (63.9, 15.00) (67.6, 15.00) (50.9, -3.23) (90.0, 8.09) (63.4, 15.00) 136.86 136.85 136.96 136.71 122.57 136.88 136.98 Acceleration 7.17% 7.18% 7.10% 7.27% 16.86% 7.15% 7.09% Acceleration 160.61 164.47 119.42 120.34 356.37 162.46 119.41 Acceleration 2.45% 0.10% 27.47% 26.90% -116.45% 1.33% 27.48% Power 1460.96 1460.80 1007.14 1031.21 785.72 1462.77 1005.11 -1.58% -1.59% -32.16% -30.53% -47.07% -1.46% -32.29%
View full slide show




KU Office of Research Pre-Award Services Contacts [email protected] Nancy Biles Associate Director 864-7434, [email protected] Team 1 Brad Bernet 864-7465 [email protected] Team 2 Team 3 Jessica Brown Megan Todd 864-4777 864-7782 [email protected] [email protected] http://research.ku.edu/Team_Assignments_Pre_Award_Post_Award 1
View full slide show




R Chart Control Limits UCLR D4 R Table 10.3, p.433 LCLR D3 R k  Ri R  i 1 k Sample Range at Time i # Samples
View full slide show




R Chart Control Limits k R  R i 1 k i 3 . 85  4 . 27  ...  4 . 22   3 . 894 7 UCLR D4 * R 2.11 * 3.894 8.232 LCLR D3 * R 0 * 3.894 0 D3 , D4 from Table 10.3
View full slide show




Control Charts for Variables Control Charts - Special Metal Screw R - Charts UCLR = D4R LCLR = D3R R = 0.0020
View full slide show




Range Chart - Special Metal Screw 0.005 UCLR = 0.00456 Range (in.) 0.004 0.003 0.002 R = 0.0020 0.001 0 LCLR = 0 1 2 3 4 Sample number 5 6
View full slide show