飯飯 飯飯 Iijima Sumio
View full slide show




What are Carbon Nanotubes (CNTs)     Discovered by Iijima in 1991. Structure of rolled graphene. Diameter range of 0.4 to 2.0 nm. Synthesis methods include: arc discharge, laser ablation, chemical vapor deposition Formed in various single and multi-walled arrangements.
View full slide show




References Iijima, S. Helical microtubules of graphitic carbon. Nature. 1991, 354, 56–58.  Koskinen, P. Computational Modeling of Carbon Nanotubes. [Online]  Carbon Nanotube Hierachial Composites for Interlaminar Strengthening. Aerospace Engineering Blog. [Online] May 11, 2012.  Lieber, C. Carbon nanotube atomic force microscopy tips: Direct growth by chemical vapor deposition and application to high-resolution imaging. PNAS. 2000, vol . 97, no.8, 3809-3813   Field effect Transistors. Nanointegris. [Online] http://www.nanointegris.com/en/transistors
View full slide show




Related Work                P. Auffret, “Sinfp, unification of active and passive operating system fingerprinting,” Jour. Comp. Virology, vol. 6, no. 3, pp. 197–205, 2010. Fyodor, “Remote os detection via tcp/ip stack fingerprinting,” http://www.insecure.org/nmap/nmapfingerprinting-article.html, Tech. Rep.,1999. L. G. Greenwald and T. J. Thomas, “Toward undetected operating system fingerprinting,” in Proceedings of the first USENIX workshopon Offensive Technologies, 2007, pp. 6:1–6:10. D. Richardson, S. Gribble, and T. Kohno, “The limits of automatic os fingerprint generation,” in ACM workshop on Artificial intelligence and security (AISec), 2010, pp. 24–34. G. Taleck, “Ambiguity resolution via passive os fingerprinting,” in International Symposium on Recent Advances in Intrusion Detection (RAID), 2003, pp. 192–206. A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement of hpc applications,” in Proceedings of the annual international conference on Supercomputing, 2008, pp. 175–184. A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing channels in compute clouds,” in Proceedings of ACM workshop on Cloud computing security workshop, 2010, pp. 103–108. T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds,” in Proc. of ACM Conference on Computer and Communications Security (CCS), 2009. K. Okamura and Y. Oyama, “Load-based covert channels between xen virtual machines,” in Proceedings of the ACM Symposium on Applied Computing, 2010, pp. 173–180. D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Varghese, G. Voelker, and A. Vahdat, “Difference engine: harnessing memory redundancy in virtual machines,” Commun. ACM, vol. 53, no. 10, pp. 85–93, 2010. X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data deduplication to accelerate live virtual machine migration,” in IEEE International Conference on Cluster Computing, 2010, pp. 88–96. A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by using ksm,” in Linux Symposium, 2009, pp. 19–28. K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication as a threat to the guest os,” in Proceedings of the Fourth European Workshop on System Security, 2011, pp. 1:1–1:6. H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management for isolation enhanced cloud services,” in ACM Cloud Computing Security Workshop, 2009, pp. 77–84. Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone: Coresidency detection in the cloud via side-channel analysis,” in Proceedings of the IEEE Symposium on Security and Privacy (Oakland), 2011, pp. 313–328.
View full slide show




Related Work •P. Auffret, “Sinfp, unification of active and passive operating system fingerprinting,” Jour. Comp. Virology, vol. 6, no. 3, pp. 197–205, 2010. •Fyodor, “Remote os detection via tcp/ip stack fingerprinting,” http://www.insecure.org/nmap/nmapfingerprinting-article.html, Tech. Rep.,1999. •L. G. Greenwald and T. J. Thomas, “Toward undetected operating system fingerprinting,” in Proceedings of the first USENIX workshopon Offensive Technologies, 2007, pp. 6:1–6:10. •D. Richardson, S. Gribble, and T. Kohno, “The limits of automatic os fingerprint generation,” in ACM workshop on Artificial intelligence and security (AISec), 2010, pp. 24–34. •G. Taleck, “Ambiguity resolution via passive os fingerprinting,” in International Symposium on Recent Advances in Intrusion Detection (RAID), 2003, pp. 192–206. •A. Verma, P. Ahuja, and A. Neogi, “Power-aware dynamic placement of hpc applications,” in Proceedings of the annual international conference on Supercomputing, 2008, pp. 175–184. •A. Aviram, S. Hu, B. Ford, and R. Gummadi, “Determinating timing channels in compute clouds,” in Proceedings of ACM workshop on Cloud computing security workshop, 2010, pp. 103–108. •T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: exploring information leakage in third-party compute clouds,” in Proc. of ACM Conference on Computer and Communications Security (CCS), 2009. •K. Okamura and Y. Oyama, “Load-based covert channels between xen virtual machines,” in Proceedings of the ACM Symposium on Applied Computing, 2010, pp. 173–180. •D. Gupta, S. Lee, M. Vrable, S. Savage, A. Snoeren, G. Varghese, G. Voelker, and A. Vahdat, “Difference engine: harnessing memory redundancy in virtual machines,” Commun. ACM, vol. 53, no. 10, pp. 85–93, 2010. •X. Zhang, Z. Huo, J. Ma, and D. Meng, “Exploiting data deduplication to accelerate live virtual machine migration,” in IEEE International Conference on Cluster Computing, 2010, pp. 88–96. •A. Arcangeli, I. Eidus, and C. Wright, “Increasing memory density by using ksm,” in Linux Symposium, 2009, pp. 19–28. •K. Suzaki, K. Iijima, T. Yagi, and C. Artho, “Memory deduplication as a threat to the guest os,” in Proceedings of the Fourth European Workshop on System Security, 2011, pp. 1:1–1:6. •H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management for isolation enhanced cloud services,” in ACM Cloud Computing Security Workshop, 2009, pp. 77–84. 18 •Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, “Homealone: Coresidency detection in the cloud via
View full slide show