Instrumental Uncertainties     When evaluating the effect of uncertainties on a result, one has to be aware of the underlying principles of the experiment. As an important example, consider an electrical experiment involving a resistor with a 1% tolerance. Say you connect such a resistor to a battery and measure the current through it, I = V/R. The resistor’s value can be within 1% of the stated value, so say instead of 100 ohm it is 99 ohm. But repeated experiments with the same resistor will all be with a 99 ohm resistor. The error is a systematic error. However, let’s say an entire class is doing the experiment, each with their own 1%-tolerance resistor. Some will be 99 ohm, some will be 100 ohm, some will be 101 ohm. The collection of results with that 1%-tolerance resistor now has a random error of order 1%. Mar 5, 2010
View full slide show




ASCII Confirmation Program #3 ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code # # # # # # # # # # # # # # # # 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 is: is: is: is: is: is: is: is: is: is: is: is: is: is: is: is: @ A B C D E F G H I J K L M N O ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII ASCII Characters & Strings Lesson 1 CS1313 Fall 2016 Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code Code # # # # # # # # # # # # # # # # 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 is: is: is: is: is: is: is: is: is: is: is: is: is: is: is: is: P Q R S T U V W X Y Z [ \ ] ^ _ 16
View full slide show